Что происходит с генератором при перегрузке

Подключение реле приоритета нагрузок (однофазное, трехфазное)

Вторичные реле максимального тока прямого действия

Из числа токовых реле, которые выпускает промышленность, наиболее простыми являются реле максимального тока прямого действия. Несмотря на различные конструкции данных реле, вся их работа основана на электромагнитном принципе. Последовательно с вторичной обмоткой измерительного трансформатора тока6 подключается катушка реле 3. Когда по питающей линии А протекает рабочий ток (нормальный режим работы электроприемника), электромагнитный сердечник 4 не будет втянут в катушку, поскольку электромагнитная сила Fэ, которую создает обомотка реле, будет значительно меньше, чем противодействующая ей сила пружины Fп.


Схема реле тока.

В случае возниконевения на линии А короткого замыкания ток катушки реле значительно возрастет и станет больше установленного значения. В таком случае электромагнитная сила катушки Fэ превысит противодействующую ей силу пружины Fп, что приведет к втягиванию сердечника в катушку реле. После втягивания сердечника в катушку, подвижная система 2 отопрет защелку выключателя Б, удерживающую выключатель во включенном положении. Под действием отключающей пружины 1 выключатель разорвет цепь линии А.

Будет интересно Несколько фактов о РКН (Реле контроля напряжения)

Промышленность изготавливаются вторичные реле максимального тока типа РТВ (реле токовое с выдержкой времени) и РТМ (реле токовое мгновенного действия). У РТМ есть поворотный переключатель, с помощью которого можно изменять количество витков катушки, что, в свою очередь, будет менять значение уставки тока срабатывания. Уставка тока – это настройка реле на заданный ток срабатывания. Стандартом предусмотрены следующие уставки: 5, 7, 9, 13 и 15 А. Ток срабатывания реле – минимальное значение протекающего через обмотку тока, при котором происходит срабатывание реле (Iср).

В случае необходимости отключения участка электрической цепи с выдержкой времени применяют РТВ, которое, как правило, имеет ту же конструкцию, но дополнительно оборудовано механизмом выдержки времени (часовым механизмом). Данный механизм, прикрепленный к сердечнику, удерживает его от мгновенного втягивания в катушку, тем самым изменяя уставку его времени срабатывания. Скорость работы часового механизма напрямую зависит от тока, протекающего в катушке реле.

Установка времени – это настройка механизма выдержки времени на определенное значение в секундах. Реле имеет уставки тока 5, 6, 7, 8, 9, 10 А. РТВ и РТМ называют встроенными, так как они встраиваются непосредственно в приводы выключателей. Для непосредственного отключения выключателя эти реле должны развивать огромные усилия, что делает их конструкции громоздкими, а это влияет на точность.

Профилактика перегрузки реле: методы предотвращения

Для предотвращения напряжения перегрузки реле и обеспечения нормальной работы системы необходимо применять ряд профилактических методов.

Во-первых, необходимо правильно подобрать реле для конкретной системы. Реле должно иметь достаточную номинальную мощность, чтобы справиться с нагрузкой при максимальном рабочем токе. Для этого необходимо внимательно изучить характеристики реле и требования к системе.

Во-вторых, рекомендуется регулярно проверять состояние реле и его элементов, таких как контакты и катушка. При обнаружении признаков износа или повреждений необходимо произвести замену или ремонт. Следует также устранить возможные причины перегрузки, например, проверить состояние оборудования или проводки.

Для обеспечения безопасности и предотвращения перегрузки реле рекомендуется использовать защитные устройства, такие как предохранители или автоматические выключатели. Эти устройства могут быстро отключить питание и предотвратить перегрузку в случае возникновения проблемы.

Не стоит забывать о правильной эксплуатации системы

Важно соблюдать правила использования и не превышать номинальные значения реле. В случае появления признаков перегрузки реле, необходимо немедленно принять меры для предотвращения возможных проблем

В результате соблюдения данных методов профилактики можно минимизировать риск возникновения перегрузки реле и обеспечить бесперебойную работу системы.

Обзор моделей

В таблице представлены наиболее популярные у отечественных покупателей марки реле с указанием основных характеристик и ориентировочной стоимости.

Выбор той или иной модели обусловлен не столько ценой, сколько условиями работы реле и схемой его подключения.

Марка Основные характеристики Примерная стоимость, руб.
ABB LSS1/2 Напряжение — 230 В ∼ ± 20% Наивысший ток приоритетной нагрузки 90 A

Диапазон тока, A 5…90

Устанавливаемые диапазоны тока , A 5…30, 10…60, 15…90

2000
Legrand 0 038 11 Токи низкоприоритетных нагрузок — до 15A Порог отключения, 15 — 20 — 25 – 30 — 40 — 50 — 60А

Общий ток подключенных потребителей — 90А

Число модулей — 5

1800
CDS Schneider Electric Диапазон тока: настраиваемый приоритетный канал от 5 до 90 А, низкоприоритетные каналы — 15 А. Интервал напряжений: 240 ВА +5 %, -10 %

Частота: 50/60 Гц.

2200
F&F PR-612 Максимальный ток приоритетной нагрузки — 16 A Максимальный ток неприоритетной нагрузки 15 A

Интервал регулировки тока отключения низкоприоритетной цепи 2 — 15 А

1900
Z–LAR/8 Номинальное напряжение 250 B Ток включения >3 A

Ток отключения < 1,8 A

Частота коммутаций — до 3600/ч

1750

Отрицательные последствия перегрузки реле

Перегрузка реле может иметь серьезные отрицательные последствия, как для оборудования, так и для всей системы в целом. Одним из основных последствий является повреждение самого реле. При превышении допустимых значений напряжения или тока, реле может выйти из строя или испытать деформацию, что приведет к его неправильной работе или полному отказу.

Кроме того, перегрузка реле может вызвать повреждение подключенного оборудования. Если реле не справляется с перегрузкой и не отключает подключенную нагрузку вовремя, это может привести к повреждению электрооборудования. Например, в случае перегрузки реле защитного устройства, система может не отключить электродвигатель вовремя, что вызовет его перегрев и возможное повреждение.

Еще одним возможным последствием перегрузки реле является потеря электропитания. При некорректной работе реле и неправильном отключении подключенной нагрузки, может произойти отключение питания всей системы. Это может повлечь за собой не только просто отключение оборудования, но и потерю данных или нарушение нормального функционирования процессов.

В целом, перегрузка реле может вызвать серьезные проблемы в работе электрооборудования и системы в целом

Поэтому важно следить за правильной работой реле, устанавливать допустимые пределы перегрузки и вовремя проводить профилактический контроль и замену реле при необходимости

Функции реле перегрузки

Реле перегрузки:

• При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.

• Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.

• Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.

IEC и NEMA стандартизуют классы срабатывания реле перегрузки.

Обозначение класса срабатывания

Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Для любого стандарта (NEMA или IEC) деление изделий на классы определяет, какой период времени требуется реле на размыкание при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифровое обозначение отражает время, необходимое реле для срабатывания. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее при 600% тока полной нагрузки, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 — в течение 30 секунд и менее.

Угол наклона характеристики срабатывания зависит от класса защиты электродвигателя. Электродвигатели IEC обычно адаптированы к определённому варианту использования. Это означает, что реле перегрузки может справляться с избыточным током, величина которого очень близка к максимальной производительности реле. Класс 10 — самый распространённый класс для электродвигателей IEC. Электродвигатели NEMA имеют внутренний конденсатор большей ёмкости, поэтому класс 20 для них применяется чаще.

Реле класса 10 обычно используется для электродвигателей насосов, так как время разгона электродвигателей составляет около 0,1-1 секунды. Для многих высокоинерционных промышленных нагрузок необходимо для срабатывания реле класса 20.

Сочетание плавких предохранителей с реле перегрузки

Плавкие предохранители служат для того, чтобы защитить установку от повреждений, которые могут быть вызваны коротким замыканием. В связи с этим плавкие предохранители должны иметь достаточную ёмкость. Более низкие токи изолируются с помощью реле перегрузки. Здесь номинальный ток плавкого предохранителя соответствует не рабочему диапазону электродвигателя, а току, который может повредить наиболее слабые составляющие установки. Как было упомянуто ранее, плавкий предохранитель обеспечивает защиту от короткого замыкания, но не защиту от перегрузок при низком токе.

На рисунке представлены наиболее важные параметры, формирующие основу согласованной работы плавких предохранителей в сочетании с реле перегрузки.

Очень важно, чтобы плавкий предохранитель сработал прежде, чем другие детали установки получат тепловое повреждение в результате короткого замыкания

Проверка, регулировка и настройка тепловых реле типа ТРН, ТРП

Очень часто приходится встречать в электрохозяйствах в качестве максимальной токовой защиты электротепловые реле типов ТРН, ТРП. Подробно об этих реле я уже писал ранее. Однако, в данных реле необходимо периодически проводить настройку и регулировку уставок срабатывания. Именно об этом сегодня и поговорим.

Перед проверкой и регулировкой тепловых реле необходимо:

– произвести ревизию тепловых реле;

– создать необходимые температурные условия (не ниже +20 о С) в помещении, где они установлены. В случае невозможности создания нормальных температурных условий в помещении, где установлены тепловые реле, проверку данных реле необходимо проводить в лабораторных условиях.

Произвести внешний осмотр тепловых реле. При осмотре проверяют:

1) надежность затяжки контактов, присоединения тепловых элементов;

2) исправное состояние нагревательных элементов, состояние биметаллических пластин;

3) четкость работы механизма, связанного с контактами реле и самих контактов, отсутствие заеданий, задержек;

4) чистоту контактов и биметаллических пластин, условия охлаждения реле;

5) отсутствие вблизи реле реостатов, нагревательных приборов, возможность обдувания от вентиляторов.

При регулировке необходимо учитывать, что тепловые элементы на заводе изготовителе калибруются при температуре 20 о ± 5 о С для тепловых реле серии ТРН и при температуре 40 о С для тепловых реле серии ТРП, поэтому при испытании реле необходимо скорректировать подаваемый на реле номинальный ток с учетом окружающей температуры.

Реле серии ТРН – двухполюсные с температурной компенсацией, выпускаются на ток 0,32 – 40 А с регулятором тока уставки; для реле типа ТРН-10а в пределах от –20 до +25%, для реле ТРН-10, ТРН-25 – в пределах от –25 до +30%.

Реле имеют только ручной возврат, осуществляемый нажатием на кнопку через 1 – 2 мин. после срабатывания реле. Благодаря температурной компенсации ток уставки практически не зависит от температуры воздуха и может изменяться в пределах +3% на каждые 10 о С изменения температуры окружающего воздуха от +20 о С.

Реле серии ТРП – однофазные, без температурной компенсации, выпускаются на ток 1-600 А, с регулятором тока уставки. Механизм имеет шкалу, на которой нанесено по пять делений в обе стороны от нуля.

Цена деления 5% для открытого исполнения и 5,5% – для защищенного. При температуре окружающей среды +30 о С вносится поправка в пределах шкалы реле: одно деление шкалы соответствует изменению температуры на 10 о С. При отрицательных температурах стабильность защиты нарушается.

Принцип работы

К РПН подключают автоматы — устройства защиты отключения (УЗО). УЗО включают в себя цепи питания однотипных потребителей. Например, один блок отвечает за все розетки, другой контролирует включение приборов освещения, на третьем «висит» бойлер и так далее.

В зимнее время года в жилище обычно постоянно включён котёл отопления, а остальные группы потребителей эксплуатируются по мере надобности. При наступлении пиковой ситуации, связанной с резкой перегрузкой всей электросети, РПН оставляет приоритет питания за бойлером, временно выключая остальных потребителей. Тем самым удаётся избежать понижения температуры в помещении. Хозяева жилища могут сами выбирать, что необходимо в первую очередь защитить от неожиданных перебоев электроснабжения.

Понять, как работает РПН, можно на примере модели LSS1/2 фирмы ABB. При возникновении перегрузки реле срабатывает моментально. Для его эффективного использования понадобится установка 3 групп розеток, подключённых к разным выходам реле. К первой группе присоединяются приоритетные электроприборы, они никогда не будут отключены. Вторая розеточная линия будет питать электроустройства, которые допускают кратковременную остановку их работы. Третья группа розеток обеспечивает питанием те установки, которыми пользуются время от времени.

В зависимости от превышения норматива силы тока, автомат отключает линии по степени их важности. Время попытки повторного включения нагрузок составляет примерно 4-7 минут

Этого достаточно для того, чтобы УЗО смогли остыть.

Принцип работы и установки РПН

К общей линии подключается трансформатор тока, а после него — потребители. К первой очереди в схему включаются нагрузки, имеющие приоритетное значение и не подлежащие отключению.

Затем в схему включается реле потребителей, через которое соединяются неприоритетные группы нагрузок

При превышении тока в сети они будут отключаться в установленной последовательности в соответствии со степенью важности

Приходящий от измерителя тока сигнал поступает для анализа на встроенный в модуль компаратор. Этот элемент производит соотнесение сигнала с установленным по настройкам значением основного напряжения. Реле определяет момент срабатывания компаратора, время отключения нагрузок с малым приоритетом. Как результат — снижение тока в сети. Через установленное в настройках прибора время реле попытается подключить к сети менее важных потребителей.

Многоканальные РПН способны одновременно работать с несколькими линиями, последовательно отключающихся, начиная с нижайшего приоритета. Включаются линии, наоборот, начиная с более высокого уровня значимости.

Установка реле позволяет обойтись стандартным комплектом оборудования без затрат на дополнительную мощность сети. Это позволяет сэкономить средства — это особенно заметно в масштабах даже малого предприятия.

Ниже представлена схема подключения на примере квартиры. На входе имеется выключатель (25А), далее счетчик и группа автоматов. Также подключено определенное число бытовых приборов различных видов и мощности.


Типовая схема подключения РПН к сети в квартире многоэтажного жилого дома

При необходимости одновременного включения сразу всех электропотребителей, выходной автомат в щитке отключится, свет погаснет и все приборы прекратят свое функционирование. В действие будет приведена тепловая блокировка и автомат отключит от электропитания всю квартиру. Будет необходимо найти причины, приведшие к перегрузке, и заново включить автомат.

Такие устройства широко используются и в системах защиты на предприятиях любого масштаба для не допущения возникновения аварийных и внештатных ситуаций. Особенно актуально применение РПН на производствах с большим количеством станков и технологического оборудования, на которых перегрузки, короткие замыкания или отключение электроэнергии могут привести к серьезным последствиям.

Настройка реле перегрузки под конкретную нагрузку

Настройка реле перегрузки осуществляется с учетом особенностей конкретной нагрузки. Во время настройки необходимо учитывать предельные значения тока перегрузки, а также уровень тока, при котором нужно осуществлять срабатывание реле.

Первым шагом при настройке реле перегрузки является определение номинального тока нагрузки. Номинальный ток указывается на маркировке нагрузки или в технической документации. Это значение является основой для дальнейших расчетов и настроек.

Далее необходимо определить предельное значение тока перегрузки, при котором следует срабатывание реле. Это значение может быть указано в документации на реле или рассчитано исходя из допустимого предела перегрузки нагрузки.

Следующим шагом является настройка реле перегрузки на уровень тока, при котором оно должно срабатывать. Для этого используется регулировочный механизм, который может быть представлен в виде ручки или регулировочного винта. При настройке необходимо следить за тем, чтобы значение тока срабатывания было ниже предельного значения тока перегрузки.

После настройки реле перегрузки следует провести проверку работы устройства. Для этого подключается нагрузка, и затем осуществляется проверка срабатывания реле при превышении установленного уровня тока. Если реле срабатывает в нужный момент, настройка можно считать успешной. В противном случае, необходимо повторить настройку и проверку работоспособности.

Важно учитывать, что настройку реле перегрузки следует проводить только специалистам, имеющим достаточные знания и опыт в области электротехники. Неправильная настройка может привести к ненадежной работе реле и непредвиденным аварийным ситуациям

Особенности подключения

Обычно монтаж теплового реле осуществляется вместе с магнитным пускателем, выполняющим соединение и запуск электродвигателя. Выпускаются также и устройства, устанавливающиеся как самостоятельный прибор на DIN-рейке либо на монтажной панели — ТРН или РТТ.

Если у реле ТРН присутствует лишь пара входящих подключений, фаз в нем все равно три. Отключенный фазный провод выходит с пускателя к двигателю, минуя устройство. Изменение тока в электромоторе происходит пропорционально во всех фазах, потому достаточно выполнять контроль только за двумя из них.

Магнитный пускатель с тепловым реле ТРН с двумя входящими подключениями

Устройства снабжаются двумя группами клемм в нормально открытой и нормально замкнутой группах.

Структурная схема подключения теплового реле согласно требований ГОСТ с обозначениями

Ниже представлена схема управления, отключающая мотор от сети при возникновении нештатной ситуации от обрыва фазы либо перегрузки. Вращение двигателя осуществляется в одну сторону, управление включением выполняется с одного места посредством кнопок ПУСК и СТОП.

Включение реле в 3-х фазную сеть, управление выполняется через кнопки Стоп и Старт

Автомат подключен и к верхним контактом поступает напряжение. После нажима кнопки ПУСК происходит подключение катушки пускателя А1 и А2 к сети L1 и L2. В представленной схеме установлен пускатель, катушка которого рассчитана на 380 В.

При включении пускателя катушкой происходит замыкание дополнительных контактов 13 и 14. Кнопку ПУСК теперь можно отпустить, но контактор останется включенным. Такая схема получила название «Пуск с самоподхватом».

Для отключения электромотора от сети нужно обесточить катушку. Проследив на представленной схеме направление течения тока, можно заметить, что отключение произойдет при нажиме кнопки СТОП либо размыкании клемм теплового реле (на схеме прибор обозначен прямоугольником красного цвета).

Таким образом, при возникновении нештатной ситуации при сработке реле разрывается цепь, пускатель снимается с самоподхвата, обесточивая при этом электромотор. Перед повторным пуском после сработки необходимо выполнить осмотр механизма для выявления причин внепланового отключения и не включать вновь до их устранения.

Зачастую причиной сработки служит повышенная температура внешнего воздуха — такой момент также следует учесть при настройке механизмов и их эксплуатации.

Работа циркуляционного агрегата выполняется весьма специфическая. Дело в том, что на улитке и лопастях со временем появляется известковый налет, служащий одной из причин заклинивания и выхода из строя электродвигателя. Применяя приведенные схемы подключения можно собственными силами собрать контролирующий блок и блок защиты. В питающей цепи достаточно выставить номинал теплового реле и подключить контакты.

Схема, при помощи которой осуществляется контроль работы посредством трансформаторов тока

Красным цветом на схеме указаны трансформаторы тока, подключающиеся к амперметру и реле контроля, для визуального представления о проходящих в цепи процессов. Подключение трансформатора выполняется по схеме «звездочка» с одной общей точкой.

Причины, вызывающие перегрев

На первом месте стоят неисправности радиатора. Это могут быть: простое загрязнение тополиным пухом, пылью, листвой. Устранив загрязнения, решат проблему. Более проблематично бороться с внутренним загрязнением радиатора — накипью, появляющейся при использовании герметиков.

Затем следуют:

Разгерметизация системы, вызванная треснувшим шлангом, недостаточно затянутыми хомутами, неисправностью краника отопителя, состарившимся уплотнителем насоса и пр.;
Неисправный термостат или краник

Определить это легко, если при горячем двигателе осторожно ощупать шланг или радиатор. Если шланг холодный – причина в термостате и потребуется его замена;
Помпа, работающая неэффективно или вовсе неработающая

Это приводит к слабой циркуляции по охлаждающей системе;
Сломанный вентилятор, т.е. не включающийся из-за вышедшего из строя мотора, муфты включения, датчика, отошедшего провода. Не крутящаяся крыльчатка тоже вызывает перегрев электродвигателя;
Наконец, недостаточное уплотнение камеры сгорания. Это последствия перегрева, приводящие к сгоранию прокладки головки, образованию трещин и деформированию головки цилиндра и гильзы. Если из бачка с охлаждающей жидкостью заметно вытекание, приводящее к резкому повышению давления при запуске охлаждения, или появилась в картере маслянистая эмульсия, значит, причина в этом.

Дабы не попасть в аналогичную ситуацию, необходимо проводить профилактику, способную спасти от перегрева и поломки. «Слабое звено» определяют методом исключения, т.е. проверяют последовательно подозрительные детали.

Обозначение TP

TP — аббревиатура «thermal protection» — тепловая защита. Существуют различные типы тепловой защиты, которые обозначаются кодом TP (TPxxx). Код включает в себя:

  • Тип тепловой перегрузки, для которой была разработана тепловая защита (1-я цифра)
  • Число уровней и тип действия (2-я цифра)
  • Категорию встроенной тепловой защиты (3-я цифра)

В электродвигателях насосов, самыми распространёнными обозначениями TP являются:

TP 111: Защита от постепенной перегрузки

TP 211: Защита как от быстрой, так и от постепенной перегрузки.

Обозначение Техническая егрузка и ее варианты (1-я цифра) Количество уровней и функциональная область (2-я цифра) Категория 1 (3-я цифра)
ТР 111 Только медленно (постоянная перегрузка) 1 уровень при отключении 1
ТР 112 2
ТР 121 2 уровня при аварийном сигнале и отключении 1
ТР 122 2
ТР 211 Медленно и быстро (постоянная перегрузка, блокировка) 1 уровень при отключении 1
ТР 212 2
ТР 221 ТР 222 2 уровня при аварийном сигнале и отключении 1
2
ТР 311 ТР 321 Только быстро (блокировка) 1 уровень при отключении 1
2

Изображение допустимого температурного уровня при воздействии на электродвигатель высокой температуры. Категория 2 допускает более высокие температуры, чем категория 1.

Все однофазные электродвигатели Grundfos оснащены защитой двигателя по току и температуре в соответствии с IEC 60034-11. Тип защиты двигателя TP 211 означает, что она реагирует как на постепенное, так и на быстрое повышение температуры.

Сброс данных в устройстве и возврат в начальное положение осуществляется автоматически. Трёхфазные электродвигатели Grundfos MG мощностью от 3.0 кВт стандартно оборудованы датчиком температуры PTC.

Эти электродвигатели были испытаны и одобрены как электродвигатели TP 211, которые реагируют и на медленное, и на быстрое повышение температуры. Другие электродвигатели, используемые для насосов Grundfos (MMG модели D и E, Siemens, и т.п.), могут быть классифицированы как TP 211, но, как правило, они имеют тип защиты TP 111.

Необходимо всегда учитывать данные, указанные на фирменной табличке. Информацию о типе защиты конкретного электродвигателя можно найти на фирменной табличке — маркировка с буквенным обозначением TP (тепловая защита) согласно IEC 60034-11. Как правило, внутренняя защита может быть организована при помощи двух типов устройств защиты: Устройств тепловой защиты или терморезисторов.

Понравилась статья? Поделиться с друзьями:
Бизнес Тайм
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: